
Understanding
Misunderstandings in

Source Code
Dan Gopstein

J. Iannacone, Y. Yan, L. DeLong,
Y. Zhuang, M. Yeh, J. Cappos

NYU, UCCS, PSU

atomsofconfusion.com

1

What is confusing?

- goto statements

- Hungarian notation

- Pointers vs References

- Single Entry, Single Exit

Who chose these?
Why do we know they are confusing?

2

Rob Pike on Pointers

Pointers have a bad reputation in
academia, because they are
considered too dangerous, dirty
somehow. But I think they are
powerful notation, which means they
can help us express ourselves clearly.

Rob Pike - Notes on Programming in C
3

Rob Pike on Pointers

Pointers have a bad reputation in
academia, because they are
considered too dangerous, dirty
somehow. But I think they are
powerful notation, which means they
can help us express ourselves clearly.

Rob Pike - Notes on Programming in C
4

Goal

A theory of confusion in software that
is objective, rigorous, and empirical.

5

Atom of Confusion

The smallest piece of code that can
cause confusion.

Other Stuff

Fluff

Confusing
Code

Confusing
Code

6

Atom of Confusion

The smallest piece of code that can
cause confusion.

Other Stuff

Fluff

Confusing
Code

Confusing
Code

Atom of Confusion

7

Confusion

'a' + 5

102 "a5"

When a person and a machine read the same piece of
code, yet come to different conclusions about its output.

8

Identify

Validate

Measure

Find potentially confusing patterns

Evaluate whether programmers error while
evaluating those patterns

Quantify the effect of removing
confusing patterns from larger programs

How we objectively identified confusion

9

How we objectively identified confusion

Identify

Validate

Measure

Find potentially confusing patterns

Evaluate whether programmers error while
evaluating those patterns

Quantify the effect of removing
confusing patterns from larger programs

10

Comparison of places to look for atom candidates

Sparse and homogenous
codebase

Dense and diverse
codebase

11

International Obfuscated C Code Contest (IOCCC)

High density and wide variety of confusing code

 extern int
 errno
 ;char
 grrr
 ;main(r,
 argv, argc) int argc ,
 r ; char *argv[];{int P();
#define x int i, j,cc[4];printf(" choo choo\n") ;
x ;if (P(! i) | cc[! j]
& P(j)>2 ? j : i){* argv[i++ +!-i]
; for (i= 0;; i++);
_exit(argv[argc- 2 / cc[1*argc]|-1<<4]) ;printf("%d",P(""));}}
 P (a) char a ; { a ; while(a > " B "
 /* - by E ricM arsh all- */); }

12

Atom Candidates

Atom Example

Change of Literal
Encoding

printf("%d", 013)

Preprocessor in
Statement

int V1 = 1
#define M1 1
+1;

Assignment as Value V1 = V2 = 3;

Logic as Control
Flow

V1 && F2();

Macro Operator
Precedence

#define M1 64-1
2*M1

Post-Increment
/Decrement

V1 = V2++;

Type Conversion (double)(3/2)

Atom Example

Reversed Subscripts 1["abc"]

Conditional Operator V2 = (V1==3)?2:V2

Comma Operator V3 = (V1+=1, V1)

Pre-Increment
/Decrement

V1 = ++V2;

Infix Operator
Precedence

0 && 1 || 2

Omitted Curly Braces if (V) F(); G();

Repurposed Variable argc = 7;

Implicit Predicate if (4 % 2)

Dead, Unreachable,
Repeated

V1 = 1;
V1 = 2;

Arithmetic as Logic (V1-3) * (V2-4)

Pointer Arithmetic "abcdef"+3

Constant Variables int V1 = 5;
printf("%d", V1);

13

https://atomsofconfusion.com/data.html#literal-encoding
https://atomsofconfusion.com/data.html#literal-encoding
https://atomsofconfusion.com/data.html#preprocessor-statement
https://atomsofconfusion.com/data.html#preprocessor-statement
https://atomsofconfusion.com/data.html#assignment-value
https://atomsofconfusion.com/data.html#logic-control
https://atomsofconfusion.com/data.html#logic-control
https://atomsofconfusion.com/data.html#macro-precedence
https://atomsofconfusion.com/data.html#macro-precedence
https://atomsofconfusion.com/data.html#post-increment
https://atomsofconfusion.com/data.html#post-increment
https://atomsofconfusion.com/data.html#type-conversion
https://atomsofconfusion.com/data.html#reversed-subscript
https://atomsofconfusion.com/data.html#conditional-operator
https://atomsofconfusion.com/data.html#comma-operator
https://atomsofconfusion.com/data.html#pre-increment
https://atomsofconfusion.com/data.html#pre-increment
https://atomsofconfusion.com/data.html#infix-precedence
https://atomsofconfusion.com/data.html#infix-precedence
https://atomsofconfusion.com/data.html#omitted-brace
https://atomsofconfusion.com/data.html#repurposed-variable
https://atomsofconfusion.com/data.html#implicit-predicate
https://atomsofconfusion.com/data.html#dead-unreachable
https://atomsofconfusion.com/data.html#dead-unreachable
https://atomsofconfusion.com/data.html#arithmetic-logic
https://atomsofconfusion.com/data.html#pointer-arithmetic
https://atomsofconfusion.com/data.html#constant-variables

Identify

Validate

Measure

Find potentially confusing patterns

Evaluate whether programmers error while
evaluating those patterns

Quantify the effect of removing
confusing patterns from larger programs

How we objectively identified confusion

14

To replace code with functionally
equivalent code, with the intent to
reduce its level of confusion.

Atom Removal Transformation

15

#define M1 64 - 1

void main(){

 int V1;

 V1 = M1 * 2;

 printf("%d\n", V1);

}

Example snippet question

What does this code output?

16

void main(){

 int V1;

 V1 = 64 - 1 * 2;

 printf("%d\n", V1);

}

What about this code?

Example snippet question

17

#define M1 64 - 1

void main(){

 int V1;

 V1 = M1 * 2;

 printf("%d\n", V1);

}

void main(){

 int V1;

 V1 = 64 - 1 * 2;

 printf("%d\n", V1);

}

With Atom Without Atom

Macro Operator Precedence

Example snippet question

18

Experiment: Are atom candidates confusing?

● 11 person pilot

● 73 subjects

● 3 examples of each atom candidate

● Partial randomized counterbalanced design

● Analyzed with Durkalski adjusted McNemar test

19

Results
Atom Effect p-value

Change of Literal
Encoding

0.60 2.93e-14

Preprocessor in
Statement

0.47 8.53e-11

Assignment as Value 0.42 3.78e-10

Logic as Control
Flow

0.41 5.62e-09

Macro Operator
Precedence

0.36 1.77e-07

Post-Increment /
Decrement

0.34 6.98e-08

Type Conversion 0.29 5.15e-07

Reversed Subscripts 0.23 1.52e-06

Atom Effect p-value

Conditional Operator 0.23 1.74e-05

Comma Operator 0.23 2.46e-04

Pre-Increment /
Decrement

0.16 6.89e-04

Infix Operator
Precedence

0.14 5.90e-05

Omitted Curly
Braces

0.14 8.64e-03

Repurposed Variable 0.12 6.66e-03

Implicit Predicate 0.10 4.27e-03

Dead, Unreachable,
Repeated

0.03 0.059

Arithmetic as Logic 0.03 0.248

Pointer Arithmetic 0.01 0.752

Constant Variables 0.00 1.000 20

https://atomsofconfusion.com/data#literal-encoding
https://atomsofconfusion.com/data#literal-encoding
https://atomsofconfusion.com/data#preprocessor-statement
https://atomsofconfusion.com/data#preprocessor-statement
https://atomsofconfusion.com/data#assignment-value
https://atomsofconfusion.com/data#logic-control
https://atomsofconfusion.com/data#logic-control
https://atomsofconfusion.com/data#macro-precedence
https://atomsofconfusion.com/data#macro-precedence
https://atomsofconfusion.com/data#post-increment
https://atomsofconfusion.com/data#post-increment
https://atomsofconfusion.com/data#reversed-subscript
https://atomsofconfusion.com/data#conditional-operator
https://atomsofconfusion.com/data#comma-operator
https://atomsofconfusion.com/data#pre-increment
https://atomsofconfusion.com/data#pre-increment
https://atomsofconfusion.com/data#infix-precedence
https://atomsofconfusion.com/data#infix-precedence
https://atomsofconfusion.com/data#omitted-brace
https://atomsofconfusion.com/data#omitted-brace
https://atomsofconfusion.com/data#repurposed-variable
https://atomsofconfusion.com/data#implicit-predicate
https://atomsofconfusion.com/data.html#dead-unreachable
https://atomsofconfusion.com/data.html#dead-unreachable
https://atomsofconfusion.com/data.html#arithmetic-logic
https://atomsofconfusion.com/data.html#pointer-arithmetic
https://atomsofconfusion.com/data.html#constant-variables

Results

Largest Effect:
Change of Literal

Encoding

Difference in correct
responses:

10%

Difference in correct
responses:

60%

Smallest Effect:

Implicit Predicate

printf("%d", 013)if (4 % 2)

21

printf("%d", 11)if ((4 % 2) != 0)

Atom

No
Atom

Identify

Validate

Measure

Find potentially confusing patterns

Evaluate whether programmers error while
evaluating those patterns

Quantify the effect of removing
confusing patterns from larger programs

How we objectively identified confusion

22

anonymous.c

int i;main(){for(;i["]<i;++i){
--i;}"];read('-'-'-',i+++"hell\
o, world!\n",'/'/'/'));}read(j
,i,p){write(j/p+p,i---j,i/i);}

First IOCCC winner
1984

23

Normalization

int i;main(){for(;i["]<i;++i){--i;}"];read('-'-'-',i+++"hell\
o, world!\n",'/'/'/'));}read(j,i,p){write(j/p+p,i---j,i/i);}

#include <stdio.h>
void F1(int V1, char *V2, int V3) {
 printf("a: %d %s %d\n", V1, V2, V3);
 int V4 = V1 / V3 + V3;
 char *V5 = V2-- - V1;
 int V6 = (int)V2 / (int)V2;
 printf("b: %d %s %d\n", V4, V5, V6);
}
int V7;
int main() {
 for (; V7["ab"];
 F1('a' - 'a',
 V7++ + "zy",
 'z' / 'z'))
 ;
 printf("c\n");
} 24

Measure confusion from atoms in bigger programs

int i;main(){for(;i["]<i;++i){--i;}"];read('-'-'-',i+++"hell\
o, world!\n",'/'/'/'));}read(j,i,p){write(j/p+p,i---j,i/i);}

#include <stdio.h>
void F1(int V1, char *V2, int V3) {
 printf("a: %d %s %d\n", V1, V2, V3);
 int V4 = V1 / V3 + V3;
 char *V5 = V2-- - V1;
 int V6 = (int)V2 / (int)V2;
 printf("b: %d %s %d\n", V4, V5, V6);
}
int V7;
int main() {
 for (; V7["ab"];
 F1('a' - 'a',
 V7++ + "zy",
 'z' / 'z'))
 ;
 printf("c\n");
}

#include <stdio.h>
void F1(int V1, char *V2, int V3) {
 printf("a: %d %s %d\n", V1, V2, V3);
 int V4 = (V1 / V3) + V3;
 char *V5 = V2 - V1;
 V2 = V2 - 1;
 int V6 = (int)V2 / (int)V2;
 printf("b: %d %s %d\n", V4, V5, V6);
}
int V7;
int main() {
 for (; "ab"[V7] != 0;) {
 F1(97 - 97,
 V7 + "zy",
 122 / 122);
 V7 = V7 + 1;
 }
 printf("c\n");
}

Obfuscated Clarified

Original:

25

Impact Experiment

 V1/V3+V3 => (V1/V3)+V3

 V2-- => V2 = V2 - 1

 V7["ab"] => "ab"[V7]

 "ab"[V7] => "ab"[V7] != 0

 'z' => 122
26

Experiment: Impact of removing atoms from program

● 10 person pilot

● 43 subjects

● 4 programs (the normalized IOCCC winner from
which atom candidates were derived)

● Partial randomized counterbalanced design

● Analyzed with t-test

27

Rates of correct output

28

Further positive indicators

When atoms are removed

- People give up 1/4 as often

- People get lost 1/2 as often

- People write 1/3 more output

- People are 5x more likely to be totally correct

29

Remaining Confusion

30

Remaining Confusion From atoms?

31

Remaining confusion (identifying false negatives)

● Static Integer Initialization to 0

● "ab"[1]

● "ab"+1

What about confusion that
remained?

32

Our Work

Identify

Validate

Measure

Find atom candidates

Experiment with isolated snippets

Experiment with original corpus
33

Style Guides conflicting our findings

● Assignment as Value - GNU

● Pointer Arithmetic - Rob Pike

● Omitted Curly Braces - Linux, NASA

● Conditional Operator - Kernighan and Pike

34

GNU Coding Standards:

“Try to avoid assignments inside
if-conditions (assignments inside
while-conditions are ok).”

if (a = 0)
 ...

while (a = 0)
 ...

35

GNU Coding Standards:

“Try to avoid assignments inside
if-conditions (assignments inside
while-conditions are ok).”

if (a = 0)
 ...

while (a = 0)
 ...

φ = 0.64 φ = 0.52

36

Missing from Style Guides

if (V1 < V2) {
 #define M1 1
 #define M2 2
}

Preprocessor in Statement

37

Summary

- A method for quantitatively and objectively
measuring misunderstanding of code
- Extracted patterns from IOCCC winners
- Objectively validate atom candidates (false

positives)
- Objectively measure impact of atoms in larger

programs (false negatives)

- Findings conflict popular style guidelines

- All materials / data available

38

BOF

- add to the dataset
- debate rigorous methodologies for creating such datasets
- discuss appropriate ways to analyze the dataset
- help to guide future data collection efforts
- get a head start on your own analysis using the data

All are welcome!

tonight @ 17:45
Room F0.530

39

Thank You

Understanding
Misunderstandings in

Source Code
Dan Gopstein

J. Iannacone, Y. Yan, L. DeLong,
Y. Zhuang, M. Yeh, J. Cappos

NYU, UCCS, PSU

atomsofconfusion.com

40

