
Understanding
Misunderstandings in

Source Code
Dan Gopstein

J. Iannacone, Y. Yan, L. DeLong,
Y. Zhuang, M. Yeh, J. Cappos

NYU, UCCS, PSU

atomsofconfusion.com

1

Hi my name is Dan and I’m going to talk about how we can know what code features
make programs confusing.

What is confusing?

- goto statements

- Hungarian notation

- Pointers vs References

- Single Entry, Single Exit

Who chose these?
Why do we know they are confusing?

2

Software engineers as a community have developed a lot of beliefs about what is
good or bad code. But often, these beliefs are just that, opinions.

What happens today when we try to decide whether code is easy or hard to
understand is we use a bunch of rules and guidelines laid down by experts in the
community.

Rob Pike on Pointers

Pointers have a bad reputation in
academia, because they are
considered too dangerous, dirty
somehow. But I think they are
powerful notation, which means they
can help us express ourselves clearly.

Rob Pike - Notes on Programming in C
3

For example, here is a reference to one of the patterns we investigate by the author
Rob Pike.

Rob Pike on Pointers

Pointers have a bad reputation in
academia, because they are
considered too dangerous, dirty
somehow. But I think they are
powerful notation, which means they
can help us express ourselves clearly.

Rob Pike - Notes on Programming in C
4

Who motivates his position with subjective reasoning and anecdotal evidence

Goal

A theory of confusion in software that
is objective, rigorous, and empirical.

5

There are studies out there that confirm or challenge the wisdom of the experts, but
mostly the style guides we have now could be bolstered by the addition of quantitative
evidence.

So our work is an attempt start from as close as we can to first principles, making as
few assumptions as possible and to build up a set of things that are confusing in
source code, and learn from these patterns.

Atom of Confusion

The smallest piece of code that can
cause confusion.

Other Stuff

Fluff

Confusing
Code

Confusing
Code

6

We’re looking for the basic building blocks of what make code confusing. If you
imagine a large piece of confusing code, perhaps its made up of multiple pieces of
smaller confusing code, or one small spots that’s confusing surrounded by other
things. We’re looking to isolate just the parts that are confusing, and in doing so
perhaps come up with a small set of minimal recurring elements that cause a lot of
programmer confusion in practice.

Atom of Confusion

The smallest piece of code that can
cause confusion.

Other Stuff

Fluff

Confusing
Code

Confusing
Code

Atom of Confusion

7

In our work we call these minimally small confusing code patterns “atoms of
confusion”

Confusion

'a' + 5

102 "a5"

When a person and a machine read the same piece of
code, yet come to different conclusions about its output.

8

It now becomes necessary to discuss what we mean by confusion. It’s important that
our definition is quantitative and observable, so we focus on whether or not a human
can correctly evaluate the code by hand. We measure whether or not a human
believes the output of a small program is the same as the actual output when
executed on a computer.

Identify

Validate

Measure

Find potentially confusing patterns

Evaluate whether programmers error while
evaluating those patterns

Quantify the effect of removing
confusing patterns from larger programs

How we objectively identified confusion

9

Our work has three main components. Identifying patterns in code that may be
confusing. Experimentally validating that those patterns are confusing. And then
measuring the impact of removing those patterns from larger programs.

How we objectively identified confusion

Identify

Validate

Measure

Find potentially confusing patterns

Evaluate whether programmers error while
evaluating those patterns

Quantify the effect of removing
confusing patterns from larger programs

10

There is no easy way to generate every possible confusing pattern in code, so instead
we look to try to extract example confusing patterns from a corpus known to contain
code that’s easy to misunderstand

Comparison of places to look for atom candidates

Sparse and homogenous
codebase

Dense and diverse
codebase

11

Most codebases tend to have confusing elements here and there, and they tend to fall
into certain categories depending on the type of code involved. For the purposes of
this work, we looked to mine examples of confusing patterns from a densely and
diversely confusing corpus.

International Obfuscated C Code Contest (IOCCC)

High density and wide variety of confusing code

 extern int
 errno
 ;char
 grrr
 ;main(r,
 argv, argc) int argc ,
 r ; char *argv[];{int P();
#define x int i, j,cc[4];printf(" choo choo\n") ;
x ;if (P(! i) | cc[! j]
& P(j)>2 ? j : i){* argv[i++ +!-i]
; for (i= 0;; i++);
_exit(argv[argc- 2 / cc[1*argc]|-1<<4]) ;printf("%d",P(""));}}
 P (a) char a ; { a ; while(a > " B "
 /* - by E ricM arsh all- */); }

12

We conducted our search for confusing patterns in the winners of the International
Obfuscated C code contest. A contest to find the most confusing programs possible.

IOCCC is a good place to look for different types of confusing code because the
programs had many different patterns to draw from, and clustered together in a small
space.

Atom Candidates

Atom Example

Change of Literal
Encoding

printf("%d", 013)

Preprocessor in
Statement

int V1 = 1
#define M1 1
+1;

Assignment as Value V1 = V2 = 3;

Logic as Control
Flow

V1 && F2();

Macro Operator
Precedence

#define M1 64-1
2*M1

Post-Increment
/Decrement

V1 = V2++;

Type Conversion (double)(3/2)

Atom Example

Reversed Subscripts 1["abc"]

Conditional Operator V2 = (V1==3)?2:V2

Comma Operator V3 = (V1+=1, V1)

Pre-Increment
/Decrement

V1 = ++V2;

Infix Operator
Precedence

0 && 1 || 2

Omitted Curly Braces if (V) F(); G();

Repurposed Variable argc = 7;

Implicit Predicate if (4 % 2)

Dead, Unreachable,
Repeated

V1 = 1;
V1 = 2;

Arithmetic as Logic (V1-3) * (V2-4)

Pointer Arithmetic "abcdef"+3

Constant Variables int V1 = 5;
printf("%d", V1);

13

Two researchers went and looked at patterns in the IOCCC code and if they both
believed them confusing, we put them on the list to test if they’re confusing.

From the IOCCC winners, we extracted 19 potentially confusing patterns. Things like
using logical operators to control program flow to the use of implicit type conversions.
We call these patterns atom candidates, because if we can experimentally show they
are regularly misinterpreted by programmers, we can call them atoms of confusion.

While there is room for experimenter subjectivity in this process, we are able to
control both false positives and false negatives, which I’ll describe later.

https://atomsofconfusion.com/data.html#literal-encoding
https://atomsofconfusion.com/data.html#literal-encoding
https://atomsofconfusion.com/data.html#preprocessor-statement
https://atomsofconfusion.com/data.html#preprocessor-statement
https://atomsofconfusion.com/data.html#assignment-value
https://atomsofconfusion.com/data.html#logic-control
https://atomsofconfusion.com/data.html#logic-control
https://atomsofconfusion.com/data.html#macro-precedence
https://atomsofconfusion.com/data.html#macro-precedence
https://atomsofconfusion.com/data.html#post-increment
https://atomsofconfusion.com/data.html#post-increment
https://atomsofconfusion.com/data.html#type-conversion
https://atomsofconfusion.com/data.html#reversed-subscript
https://atomsofconfusion.com/data.html#conditional-operator
https://atomsofconfusion.com/data.html#comma-operator
https://atomsofconfusion.com/data.html#pre-increment
https://atomsofconfusion.com/data.html#pre-increment
https://atomsofconfusion.com/data.html#infix-precedence
https://atomsofconfusion.com/data.html#infix-precedence
https://atomsofconfusion.com/data.html#omitted-brace
https://atomsofconfusion.com/data.html#repurposed-variable
https://atomsofconfusion.com/data.html#implicit-predicate
https://atomsofconfusion.com/data.html#dead-unreachable
https://atomsofconfusion.com/data.html#dead-unreachable
https://atomsofconfusion.com/data.html#arithmetic-logic
https://atomsofconfusion.com/data.html#pointer-arithmetic
https://atomsofconfusion.com/data.html#constant-variables

Identify

Validate

Measure

Find potentially confusing patterns

Evaluate whether programmers error while
evaluating those patterns

Quantify the effect of removing
confusing patterns from larger programs

How we objectively identified confusion

14

So, we designed an experiment to validate whether or not our candidates were
confusing. This allows us to remove false positives from our list of atom candidates.

To replace code with functionally
equivalent code, with the intent to
reduce its level of confusion.

Atom Removal Transformation

15

The notion of confusing code is a relative term. Relative to what? To make sure we
only measure the level of confusion created by the code itself and not the underlying
behavior, we compared each potentially confusing snippet against another
functionally equivalent snippet which had its confusing pattern replaced with code that
did not contain an atom candidate.

#define M1 64 - 1

void main(){

 int V1;

 V1 = M1 * 2;

 printf("%d\n", V1);

}

Example snippet question

What does this code output?

16

Here’s an example question we asked subjects. What does this code output?

void main(){

 int V1;

 V1 = 64 - 1 * 2;

 printf("%d\n", V1);

}

What about this code?

Example snippet question

17

In this example the snippet on the left shows the macro operator precedence atom
candidate. Since macros in C are processed using textual substitution there are
occasionally subtle side effects to using infix operations next to them. The example on
the right replaces this potential source of confusion with clarified code that results in
the same output.

#define M1 64 - 1

void main(){

 int V1;

 V1 = M1 * 2;

 printf("%d\n", V1);

}

void main(){

 int V1;

 V1 = 64 - 1 * 2;

 printf("%d\n", V1);

}

With Atom Without Atom

Macro Operator Precedence

Example snippet question

18

In this example the snippet on the left shows the macro operator precedence atom
candidate. Since macros in C are processed using textual substitution there are
occasionally subtle side effects to using infix operations next to them. The example on
the right replaces this potential source of confusion with clarified code that results in
the same output.

Experiment: Are atom candidates confusing?

● 11 person pilot

● 73 subjects

● 3 examples of each atom candidate

● Partial randomized counterbalanced design

● Analyzed with Durkalski adjusted McNemar test

19

Cappos: What do you say here? You won’t just read this, I’m sure...

Results
Atom Effect p-value

Change of Literal
Encoding

0.60 2.93e-14

Preprocessor in
Statement

0.47 8.53e-11

Assignment as Value 0.42 3.78e-10

Logic as Control
Flow

0.41 5.62e-09

Macro Operator
Precedence

0.36 1.77e-07

Post-Increment /
Decrement

0.34 6.98e-08

Type Conversion 0.29 5.15e-07

Reversed Subscripts 0.23 1.52e-06

Atom Effect p-value

Conditional Operator 0.23 1.74e-05

Comma Operator 0.23 2.46e-04

Pre-Increment /
Decrement

0.16 6.89e-04

Infix Operator
Precedence

0.14 5.90e-05

Omitted Curly
Braces

0.14 8.64e-03

Repurposed Variable 0.12 6.66e-03

Implicit Predicate 0.10 4.27e-03

Dead, Unreachable,
Repeated

0.03 0.059

Arithmetic as Logic 0.03 0.248

Pointer Arithmetic 0.01 0.752

Constant Variables 0.00 1.000 20

Of the 19 atom candidates we tested, 15 met the statistical significance to be
classified as an atom of confusion. The p-value for each of these atoms is each at
least a factor of ten below the commonly accepted standard of .05. The effect size,
which roughly measures how confusing a pattern is, ranges from 0.1 which is
considered small, to 0.6 which is considered very large.

https://atomsofconfusion.com/data#literal-encoding
https://atomsofconfusion.com/data#literal-encoding
https://atomsofconfusion.com/data#preprocessor-statement
https://atomsofconfusion.com/data#preprocessor-statement
https://atomsofconfusion.com/data#assignment-value
https://atomsofconfusion.com/data#logic-control
https://atomsofconfusion.com/data#logic-control
https://atomsofconfusion.com/data#macro-precedence
https://atomsofconfusion.com/data#macro-precedence
https://atomsofconfusion.com/data#post-increment
https://atomsofconfusion.com/data#post-increment
https://atomsofconfusion.com/data#reversed-subscript
https://atomsofconfusion.com/data#conditional-operator
https://atomsofconfusion.com/data#comma-operator
https://atomsofconfusion.com/data#pre-increment
https://atomsofconfusion.com/data#pre-increment
https://atomsofconfusion.com/data#infix-precedence
https://atomsofconfusion.com/data#infix-precedence
https://atomsofconfusion.com/data#omitted-brace
https://atomsofconfusion.com/data#omitted-brace
https://atomsofconfusion.com/data#repurposed-variable
https://atomsofconfusion.com/data#implicit-predicate
https://atomsofconfusion.com/data.html#dead-unreachable
https://atomsofconfusion.com/data.html#dead-unreachable
https://atomsofconfusion.com/data.html#arithmetic-logic
https://atomsofconfusion.com/data.html#pointer-arithmetic
https://atomsofconfusion.com/data.html#constant-variables

Results

Largest Effect:
Change of Literal

Encoding

Difference in correct
responses:

10%

Difference in correct
responses:

60%

Smallest Effect:

Implicit Predicate

printf("%d", 013)if (4 % 2)

21

printf("%d", 11)if ((4 % 2) != 0)

Atom

No
Atom

Of the 19 atom candidates we tested, 15 met the statistical significance to be
classified as an atom of confusion. The p-value for each of these atoms is each at
least a factor of ten below the commonly accepted standard of .05. The effect size,
which roughly measures how confusing a pattern is, ranges from 0.1 which is
considered small, to 0.6 which is considered very large.

Identify

Validate

Measure

Find potentially confusing patterns

Evaluate whether programmers error while
evaluating those patterns

Quantify the effect of removing
confusing patterns from larger programs

How we objectively identified confusion

22

At this point we can measure the potency of these atoms, not just alone, but in the
context of a larger program.

It also allows us to go back and correct for any false negatives from the original
identification step.

anonymous.c

int i;main(){for(;i["]<i;++i){
--i;}"];read('-'-'-',i+++"hell\
o, world!\n",'/'/'/'));}read(j
,i,p){write(j/p+p,i---j,i/i);}

First IOCCC winner
1984

23

We went back to the original programs from which the atoms were extracted with the
goal that we could test how much of an impact removing the atoms of confusion
would have on programmer misunderstanding.

Normalization

int i;main(){for(;i["]<i;++i){--i;}"];read('-'-'-',i+++"hell\
o, world!\n",'/'/'/'));}read(j,i,p){write(j/p+p,i---j,i/i);}

#include <stdio.h>
void F1(int V1, char *V2, int V3) {
 printf("a: %d %s %d\n", V1, V2, V3);
 int V4 = V1 / V3 + V3;
 char *V5 = V2-- - V1;
 int V6 = (int)V2 / (int)V2;
 printf("b: %d %s %d\n", V4, V5, V6);
}
int V7;
int main() {
 for (; V7["ab"];
 F1('a' - 'a',
 V7++ + "zy",
 'z' / 'z'))
 ;
 printf("c\n");
} 24

In the program’s raw form however there was a lot of confusing aspects not directly
related to the code itself, but to the formatting and semantic beacons embedding
inside.

Measure confusion from atoms in bigger programs

int i;main(){for(;i["]<i;++i){--i;}"];read('-'-'-',i+++"hell\
o, world!\n",'/'/'/'));}read(j,i,p){write(j/p+p,i---j,i/i);}

#include <stdio.h>
void F1(int V1, char *V2, int V3) {
 printf("a: %d %s %d\n", V1, V2, V3);
 int V4 = V1 / V3 + V3;
 char *V5 = V2-- - V1;
 int V6 = (int)V2 / (int)V2;
 printf("b: %d %s %d\n", V4, V5, V6);
}
int V7;
int main() {
 for (; V7["ab"];
 F1('a' - 'a',
 V7++ + "zy",
 'z' / 'z'))
 ;
 printf("c\n");
}

#include <stdio.h>
void F1(int V1, char *V2, int V3) {
 printf("a: %d %s %d\n", V1, V2, V3);
 int V4 = (V1 / V3) + V3;
 char *V5 = V2 - V1;
 V2 = V2 - 1;
 int V6 = (int)V2 / (int)V2;
 printf("b: %d %s %d\n", V4, V5, V6);
}
int V7;
int main() {
 for (; "ab"[V7] != 0;) {
 F1(97 - 97,
 V7 + "zy",
 122 / 122);
 V7 = V7 + 1;
 }
 printf("c\n");
}

Obfuscated Clarified

Original:

25

From the normalized code we made two versions. One was kept intact, containing
each atom of confusion as in the original program (we call this obfuscated). And one
version having each atom removed (we call this clarified). I’ve highlighted several of
the atoms we transformed in the code above. We’ll zoom in to those transformations
on the next slide.

Impact Experiment

 V1/V3+V3 => (V1/V3)+V3

 V2-- => V2 = V2 - 1

 V7["ab"] => "ab"[V7]

 "ab"[V7] => "ab"[V7] != 0

 'z' => 122
26

In the red box we added some parentheses around a division. In the blue box we
replaced a post-decrement operator with its equivalent assignment. The green and
yellow boxes were both applied to the same expression. We reversed the operands of
the subscript operator, and we also added an explicit test against 0 since the
expression was the predicate of an if statement. And in purple we replace a character
literal with its int equivalent.

Experiment: Impact of removing atoms from program

● 10 person pilot

● 43 subjects

● 4 programs (the normalized IOCCC winner from
which atom candidates were derived)

● Partial randomized counterbalanced design

● Analyzed with t-test

27

No participant received both versions of the same program

Rates of correct output

28

The results were dramatic. The Y-axis shows how correct each subject’s output was.
On the X axis we have pairs of programs, each yellow bar is an obfuscated program
and each purple bar is a clarified program. And across the board each clarified
program had significantly higher correctness scores.

Further positive indicators

When atoms are removed

- People give up 1/4 as often

- People get lost 1/2 as often

- People write 1/3 more output

- People are 5x more likely to be totally correct

29

Beyond just the number of correct and incorrect lines of output, we tracked several
secondary metrics.

In clarified programs were significantly less like to give up, or get lost in the program.
And they were more likely to write more lines of output and evaluate the whole
program totally correctly.

Remaining Confusion

30

Remaining Confusion From atoms?

31

Remaining confusion (identifying false negatives)

● Static Integer Initialization to 0

● "ab"[1]

● "ab"+1

What about confusion that
remained?

32

After analyzing each participant's output we noticed there were still parts of the
clarified code that was confusing to people. For example many participants didn’t
realize that according to C99 all integers declared in static scope are implicitly
initialized to 0.

Our Work

Identify

Validate

Measure

Find atom candidates

Experiment with isolated snippets

Experiment with original corpus
33

We can use the confusing patterns found after the last measurement step, and use
those as the identified atom candidates for another round of this same process. In fact
we are in the process of iterating on this workflow now. This process can be repeated
until we can find every atom in the original corpus.

Fixing errata

Style Guides conflicting our findings

● Assignment as Value - GNU

● Pointer Arithmetic - Rob Pike

● Omitted Curly Braces - Linux, NASA

● Conditional Operator - Kernighan and Pike

34

There were also examples where style guidelines recommend patterns that our
results show add confusion.

GNU Coding Standards:

“Try to avoid assignments inside
if-conditions (assignments inside
while-conditions are ok).”

if (a = 0)
 ...

while (a = 0)
 ...

35

For example the GNU coding standards recommend using assignments in
if-statements, but explicitly says there’s no problem with assignments in
while-conditions.

GNU Coding Standards:

“Try to avoid assignments inside
if-conditions (assignments inside
while-conditions are ok).”

if (a = 0)
 ...

while (a = 0)
 ...

φ = 0.64 φ = 0.52

36

While our results do show slightly increased error rates for assignments inside
if-statements, the error rates for assignments is still over the value of 0.5 which is
considered large, and therefore very confusing.

Missing from Style Guides

if (V1 < V2) {
 #define M1 1
 #define M2 2
}

Preprocessor in Statement

37

Given our list of atoms, we went back and compared our results with several popular
C style guides. We found that there were some atoms which nobody seemed to be
discussing.

For example preprocessor in statement, where preprocessor directives are contained
inside of non-preprocessor code, happens extremely frequently, for example tens of
thousands of times in the linux kernel. This is the second highest effect size atom and
our data indicates causes substantial confusion..

Summary

- A method for quantitatively and objectively
measuring misunderstanding of code
- Extracted patterns from IOCCC winners
- Objectively validate atom candidates (false

positives)
- Objectively measure impact of atoms in larger

programs (false negatives)

- Findings conflict popular style guidelines

- All materials / data available

38

BOF

- add to the dataset
- debate rigorous methodologies for creating such datasets
- discuss appropriate ways to analyze the dataset
- help to guide future data collection efforts
- get a head start on your own analysis using the data

All are welcome!

tonight @ 17:45
Room F0.530

39

The work we’ve presented today is only the tip of the iceberg. If you’re interested in
any of the topics we’ve discussed already, or are excited about related ideas, please
come to our break out session later tonight.

Or if you can’t make it, come talk to me or my advisor Justin Cappos, sitting in the
front row with the yellow hat, for more details.

Thank You

Understanding
Misunderstandings in

Source Code
Dan Gopstein

J. Iannacone, Y. Yan, L. DeLong,
Y. Zhuang, M. Yeh, J. Cappos

NYU, UCCS, PSU

atomsofconfusion.com

40

