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Abstract—Program comprehension is a common task in 

software development. Programmers perform program 

comprehension at different stages of the software development 

life cycle. Detecting when a programmer experiences problems or 

confusion can be difficult. Self-reported data may be useful, but 

not reliable. More importantly, it is hard to use the self-reported 

feedback in real time. 

In this study, we use an inexpensive, non-invasive EEG device 

to record 8 subjects’ brain activity in short program 

comprehension. Subjects were presented either confusing or non-

confusing C/C++ code snippets. Paired sample t-tests are used to 

compare the average magnitude in alpha and theta frequency 

bands. The results show that the differences in the average 

magnitude in both bands are significant comparing confusing 

and non-confusing questions. We then use ANOVA to detect 

whether such difference also presented in the same type of 

questions. We found that there is no significant difference across 

questions of the same difficulty level. Our outcome, however, 

shows alpha and theta band powers both increased when subjects 

are under the heavy cognitive workload. Other research studies 

reported a negative correlation between (upper) alpha and theta 

band powers. 
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I. INTRODUCTION 

Software design includes complex cognitive tasks including 
program comprehension where symbols and expressions are to 
be translated and combined to create the expected outcome. 
Program comprehension is performed at different stages of the 
software development life cycle and at different times. It is 
essential for software developers to perform program 
comprehension to create software and to avoid flaws. This 
study is to understand whether programmers react differently 
to short C/C++ code snippets of different types through 
recording and analyzing their brain activity and whether the 
brain activity measure is consistent with the type of code 
snippet (confusing vs. non-confusing). 

To test our hypothesis that brain waves are different when 
people are solving code snippets, we created two versions of 

code snippet, one is confusing, hence more difficult to come up 
with an answer, and the other is non-confusing, hence easier to 
solve, based on six features of C/C++. The pair of code 
snippets in each feature are essentially equivalent. Subjects 
were asked to solve six pairs, twelve in total, of code snippets. 
These questions have been tested by programmers to confirm 
that the confusing code snippets are indeed confusing—
subjects showing significantly lower accuracy and longer time 
on task [1]. 

In addition to the code snippets, we asked subjects to 
indicate how difficult the question they just saw was and how 
confident they were about the answer they entered. The self-
reported data can provide data to understand how subjects 
perceive each code snippet. 

To record subjects' brain activity, we used an inexpensive, 
non-invasive, consumer-grade EEG (electroencephalograph) 
device manufactured by Emotiv called Epoc+. The total cost of 
the device and software is less than one thousand dollars. 

It is difficult to capture the moment when a programmer 
experiences problems or confusion. These type of data are 
typically self-reported. Alternatively, the difficulty of the code 
snippets can be assessed by scoring the outcome, either by 
accuracy or quality. Either method, however, fails to provide 
just-in-time feedback for further applications. Moreover, a 
code snippet may be confusing to one person but not confusing 
to another. Although it is possible to test different features by 
using a large number of human subjects, EEG signals provide a 
way to detect whether a code snippet is confusing or not. 

As non-invasive EEG devices becoming more accessible 
and signal processing techniques becoming more advanced, it 
is now possible to collect physiological data that reflects 
cognitive workload during learning and problem-solving 
processes. This can be particularly useful for educational 
applications such as intelligent tutoring systems. 

II. RELATED WORK 

The EEG signal reflects an electrical current in the brain 
that can be recorded using invasive (electrodes placed cortical 
surface) and non-invasive (electrodes placed on the scalp). 
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Different devices provide different spatial densities (number of 
electrodes) and resolutions (sampling rate). Interested readers 
can read [2]–[4] for more details and background knowledge 
about EEG. We select studies that are closely related to this 
paper and discuss them below. 

A. Brain Waves as Indicators 

1) Theta Frequency 
The theta frequency band (4 – 8 Hz) is often associated 

with the degree of mental process, cognitive workload, or 
working memory load. In a study, Raghavachari et al. [5] 
aimed to determine the relation between working memory load 
and the power of EEG signal in the theta frequency band. They 
recorded four subjects’ EEG signals while the subjects 
performed the Sternberg task, which is a non-spatial task, using 
iEEG devices (an invasive method that places a small array of 
electrodes on the cortical surface.) They found that the 
amplitude of theta frequency band increased at the beginning 
of the trial and remain strong throughout the trials. Another 
earlier study [6] also reported that an increase in theta band 
power was related to working memory load. Both studies 
suggest that theta frequency power is positively related to the 
working memory workload for non-spatial tasks. The task we 
used in the study is also non-spatial (program comprehension.) 
However, we are aiming to discover whether the non-invasive 
EEG that covers a larger area of the brain than iEEG does can 
produce similar outcomes because signals from non-invasive 
methods contain more noise and interference (e.g., eye blinks, 
muscle movements, signals travel from neurons to the skull.) 

2) Alpha Frequency 
Alpha frequency band (8 – 13 Hz) is one of the earliest 

frequency bands studied for making connection between EEG 
signals and brain activities. Similar to theta band power, alpha 
band power also changes in relation to working memory load 
and task performance. However, theta and alpha band powers 
interact with working memory load in an opposite way, i.e., 
when alpha band power increases, theta band power decreases 
[7]. In addition, researchers have found that the range of alpha 
frequencies differ by individual due to a wide range of factors 
such as age [7], memory performance [8], head size [9], etc. 
Normally, the alpha frequency band is analyzed in sub-bands 
(two Hz in each band): lower 1 alpha, lower 2 alpha, and upper 
alpha. Among them, upper alpha is the one that has been 
discussed the most and used for EEG analysis related to 
cognitive performance. Upper alpha band normally is defined 
as the frequency range from the individual alpha frequency 
(IAF) to IAF + 2 Hz. In our study, we used broad alpha 
frequency band (8 – 13 Hz) instead of the upper alpha band 
because we do not have subjects’ ages to calculate their IAFs. 

3) Event-Related Desynchronization/Synchronization 
EEG signals are inherently noisy and hard to analyze. One 

method called Event-Related Desynchronization (ERD) is 
often used in areas related to cognitive workload [10], [11]. 
ERD shows a time period that neurotic oscillation does not 
synchronize, which causes the amplitude to be weaker than 
when neurons oscillate synchronically. On the other hand, 
Event-Related Synchronization (ERS) is similar to ERD except 
that ERS is when neurons exhibit synchronized oscillation, 
which increases the strength of amplitude. 

To calculate ERD, the amplitude during an event is 
compared with the amplitude from a wakeful, restful state. 
ERD is essentially the change of power in percentage from the 
restful state to the time when the stimulus is presented. The 
formula of ERD can be found in [12]. ERD/ERS is mentioned 
briefly here because of its popularity and for discussing related 
work. Our work, however, does not use this analysis because 
we do not have a wakefulness state as a reference for 
calculating ERD. 

B. Applications of EEG 

Typically, two methods can be used to assess people’s 
cognitive effort. A traditional way is asking questions in 
surveys, which depends on people’s subjective justification 
[13]. NASA Task Load Index (NASA-TLX) is an example 
instrument used in this method. Another method is using 
physiological measures, such as EEG devices, to directly 
assess cognitive load and awareness [14]. Many studies have 
used EEG devices to measure learner’s cognitive load while 
learning information or solving problems, and the evidence 
showed that using EEG devices has some merits. For example, 
Antonenko and Niederhauser [15] used EEG data (alpha, beta, 
and theta bands) to determine the effect of hypertext leads on 
subjects’ cognitive load and learning. They also measured 
cognitive load by collecting subjective data using a mental 
effort scale. The result indicated that using hypertext lead to 
lower cognitive load and resulted in better learning outcomes 
than links without leads. However, these differences only 
showed up when using alpha, beta, and theta measures in EEG 
data. There were no significant differences in the subjective 
measures. Antonenko and Niederhauser argued that the self-
reported mental effort measure reflected the overall load and 
was associated closely with one specific type of load (e.g. 
intrinsic load) while EEG data was sensitive and could catch 
the change in instantaneous load and germane load. 

An earlier study conducted by Gere and Jauscvec [16] 
investigated the differences in cognitive processes when 
subjects were learning information presented in different 
formats (text or multimedia) by using EEG data. The alpha 
power amplitude was calculated to measure the level of brain 
activity. They reported that text presentations showed higher 
cognitive load over frontal lobes (verbal processing), while 
video and pictures presentation displayed higher brain activity 
in occipital and temporal areas (visualization processing). They 
also reported that gifted students showed less mental activity. 

Recently, EEG data have been used with tutoring/learning 
system to improve subjects learning performance. For example, 
Beal and Galan [17] used EEG to measure students’ attention 
and cognitive workload while solving math problems in a 
tutoring system. They reported that students’ performance 
(failure or success) could be correctly predicted by using EEG 
data, and EEG data also correlated with students’ self-report of 
problem difficulty. Similarly, Chen and Huang [18] developed 
an attention-based self-regulated learning system using EEG 
devices. Sustained attention values were generated based on 
the real-time EEG data were recorded and then sent to the 
learning system. They reported a strong positive correlation 
between sustained attention and reading comprehension 
performance.  



Researchers also used EEG devices to investigate different 
levels of expertise in programming. Crk, Kluthe and Stefik [12] 
used the EEG from when programmers were solving Java code 
snippets. ERD was calculated in alpha and theta bands as a 
measure of cognitive demands. Their results showed that EEG 
data can differentiate programmers with different level of 
expertise. 

C. Confusing Code 

One of the oldest topics in software engineering is code 
comprehension. Recent work has moved towards building 
empirical and objective models of this comprehension. In 
particular, the Atoms of Confusion project has identified tiny 
pieces of code that have the ability to confuse programmers 
[1]. Candidates for these atoms of confusion were extracted 
from known confusing code, winners of the International 
Obfuscated C Code Contest. They were selected specifically to 
be as small as possible, but still exhibited confusion. A human-
subjects experiment with 73 participants validated the ability of 
those tiny code snippets to confuse programmers. Subjects 
were shown pairs of minimal code snippets, on average only 6 
lines for a complete program. Of these pairs, both programs 
would perform the same computation, but used different code 
to accomplish the task. One of the snippets in each pair was 
obfuscated, taken from the IOCCC winner, we refer to this 
type of snippet as “confusing”. The other snippet was 
simplified to produce the same output without using the 
confusing construct, we refer to this type of snippet as “non-
confusing”. Programmers were asked to evaluate each code 
snippet by hand and record the output of each program. The 
results of this experiment showed that many of the atom 
candidates caused programmers to make errors at rates 
significantly higher than the simplified code. The data from 
that project indicated several very small patterns in code that 
dramatically increase a programmer’s likelihood of 
misunderstanding a piece of code. 

III. INSTRUMENTS AND PROCEDURE 

In our study, the subjects are eight undergraduate or 
graduate students who had taken at least one semester of 
C/C++ coursework (self-reported). After the experiment was 
explained to the subjects and consent form was signed, the first 
step was to fit the EEG device on the subject's head. Then, the 
subject used a web-based application that we created using 
jsPsych [19] to record their answers and the timestamp when 
each code snippet was shown to the subject. We customized it 
and created plugins to meet our needs such as syntax 
highlighting and sliders to report answer confidence and 
difficulty. jsPsych has timing data for us to calculate the 
duration when the subject was exposed to each page, which 
was used to find out which stimulus the subject was looking at. 

The application first showed an instruction page, then a 
sample question so that the subject could practice how to use 
the interface. Once the subject completed the practice and had 
no further questions, he/she was shown one code snippet, 
followed by one self-report on the difficulty of the question 
and then the confidence of his/her answer. This cycle of one 
code snippet followed by two self-report questions repeated 

until all twelve code snippets (mixed order of six confusing 
and six non-confusing counterparts) were answered. 

Fig. 1. Electrode position of Emotiv Epoc+ device when the neuroheadset is 

not turned on. (When the neuroheadset is fitted and connected with the 
TestBench, the strength of each electrode is indicated by a color, green 

representing a good connection.) 

 

During the experiment, the experimenter used another 
laptop to run TestBench, an EEG application from the vendor, 
to record the subject’s EEG signals wirelessly. TestBench can 
output edf (European Data Format) and CSV (Common 
Separate Value). It also shows the strength of each channel in 
real time. EPoc+ has 14 channels (AF3, F7, F3, FC5, T7, P7, 
O1, O2, P8, T8, FC6, F4, F8, AF4) (Fig. 1.) with 128 Hz or 
256 Hz sampling rate. 

IV. DATA ANALYSIS 

We imported the edf files into the R statistical analysis 
package. The analysis was done using signals from 8 channels 
that are related to cognitive load: AF3, AF4, F3, F4, F7, F8, 
FC5, and FC6. Signals were processed by first using a band 
pass filter between 0.16 and 13 Hz. The lower frequency is 
recommended by the EEG vendor to remove DC offset. The 
higher frequency of the band pass filter is because 13 Hz was 
the highest frequency we used. We then marked all amplitudes 
that were either greater than 200 μv or less than -200 μv as NA 
because signals outside of this range represent high noise [12]. 

To see whether there is a significant difference in terms of 
neuron synchronization during program comprehension, we 
used Fourier transform to convert the signal to the frequency 
domain. After using FFT, we separated the signal by question 
and into two groups: confusing and non-confusing. Signals that 
fell outside of the target time period were not included in the 
analysis. Means of magnitude were calculated for each 
question and for both confusing questions and non-confusing 
questions as a group on selected channels. 

V. RESULTS 

A. Comparing magnitude in alpha and theta band between 

confusing questions and non-confusing questions 

Paired sample t-tests (two tailed) were used to determine 
whether there is a significant difference in EEG magnitude 
between confusing questions and non-confusing questions. The 
means, standard deviations, and t-tests statistics are shown in 
Table I (alpha band) and Table II (theta band). Since multiple t-

 

  



tests were performed for each channel, a Bonferroni correction 
was used to determine the significance level to control for the 
inflation of Type I error.  The alpha level was set to be .006 (α 
= .05/8) for each individual test. As can be inferred from Table 
I and Table II, confusing questions were associated with 
significant higher alpha and theta magnitude on most of the 
channels  (p<.006). The alpha magnitude of confusing 
questions were 1.6 to 2.3 times as high as those of non-
confusing questions. Similarly, the theta magnitude of 
confusing questions were 1.6 to 2.1 times as high as those of 
non-confusing questions. The magnitude differences in channel 
FC5 and FC6 were the largest (2 to 2.3 times) among all eight 
channels, both in alpha and theta band. 

TABLE I.  MEANS, STANDARD DEVIATIONS, AND PAIRED SAMPLE T-
TEST (DF=7) IN ALPHA BAND MAGNITUDE. 

 

TABLE II.  MEANS, STANDARD DEVIATIONS, AND PAIRED SAMPLE T-
TEST (DF=7) IN THETA BAND MAGNITUDE.  

 

B. Comparing magnitude in alpha and theta band within 

confusing questions and non-confusing questions 

In the previous section (Section V.A.), we reported that 
there were significant differences in subjects’ brainwaves when 
they were solving confusing or non-confusing questions. To 
investigate whether this effect is caused by the questions within 
the group instead of by the question type, we performed the 
following ANOVA tests. 

Several one-way ANOVA with repeated measures were 
conducted to determine differences in alpha and theta 
magnitude when subjects were solving the different questions 
in the same confusing group. The between-subject factor is the 
different questions in the same confusing group. The 
Greenhouse-Geisser correction was used to account for any 
violation of the sphericity assumption. 

We found no significant differences in subjects' alpha or 
theta magnitude when they were solving the six confusing 
questions or six non-confusing questions. The results were 
consistent across all eight channels. This indicates that subjects 
would have similar alpha and theta magnitude when solving 
programming questions with similar confusing level (difficulty 
level). It also validates the findings from previous analysis 
(Section V.A), that the differences found in the average alpha 
and theta magnitude between confusing and non-confusing 
questions are associated with the difficulty of the questions. 

C. Absolute power and subjects’ performance 

Previous studies suggest that a large reference band power 
is associated with a large amount of desynchronization (alpha 
suppression) during task performance. Klimesch [7] pointed 
out that subjects with a good memory showed significantly 
stronger power in the upper alpha band.  

A Pearson correlation was calculated to determine if the 
absolute power in the broad alpha band could predict subjects’ 
performance. The subjects’ performance was measured by the 
total number of correct answers. The correlation between 
subjects’ performance and broad alpha power is r=0.72 
(p<0.05). The correlations remain the same when calculated 
with the alpha power when solving confusing questions 
(r=0.70), or with alpha power when solving the non-confusing 
questions (r=0.73, p<0.05). 

VI. CONCLUSION 

In this work, we use an inexpensive, non-invasive EEG 
device to record subjects' brain activity during program 
comprehension and analyze the signals in the frequency 
domain. Overall the outcome is encouraging and has the 
potential for educational applications. Firstly, our analysis 
shows in both broad alpha and theta bands, the average band 
power (magnitude) are larger when solving confusing code 
snippets than when solving  non-confusing code snippets. This 
indicates either more neurons are active or neurons oscillate in 
harmony. Moreover, there is no statistical difference among 
solving the same type of code snippet in the average 
magnitudes. This indicates that the magnitude is positively 
correlated to cognitive workload. Our work demonstrates that 
alpha and theta band powers can be used to differentiate the 
type of code by simply recording EEG signals on the scalp. 
Intelligent tutoring systems can use EEG as an input to provide 
detailed explanations, extra practices, additional examples, or 
select different instructional strategies. 

Secondly, the results also exhibit that broad alpha band 
powers can be used to gauge subject's performance. This data 
can provide another modality for identifying experts or 
experienced users. 

VII. FUTURE WORK 

There are several areas we wish to improve in our future 
study. First, we did not add a long enough break between each 
question. Neuron oscillation is time sensitive and takes time to 
reflect the effect induced/evoked by the stimulus, therefore, 
adding a longer break between questions can potentially 
increase accuracy. Second, we did not collect subject age, 
which costs us the opportunity to calculate the peak alpha 
frequency [20] and calculate the upper alpha band for analysis 
because the peak alpha frequency is calculated based on age. 
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  Confusing questions Non-confusing questions t-test 

Channel M SD M SD t p 

AF3 2583896.0 2656077.0 1536269.0 1779286.0 2.92 0.022 

AF4 2547066.0 2306233.0 1411309.0 1617149.0 4.13 0.004 

F3 797148.2 522820.2 394700.5 262533.5 3.52 0.010 

F4 822321.8 479793.7 470026.1 319352.7 3.18 0.016 

F7 2167013.0 3088490.0 1297680.0 2139929.0 2.44 0.045 

F8 2591067.0 3327303.0 1575802.0 2431971.0 3.05 0.019 

FC5 815413.1 549534.7 381596.2 327352.2 3.73 0.007 

FC6 1146348.0 744481.7 559359.1 409597.3 4.50 0.003 

 

  Confusing questions Non-confusing questions t-test 

Channel M SD M SD t p 

AF3 304108.9 231830.6 190650.6 174916.0 3.08 0.018 

AF4 291101.6 189488.3 173006.8 145355.4 4.71 0.002 

F3 130961.4 89497.9 67764.0 52015.6 4.10 0.005 

F4 146566.7 91491.4 89355.2 72142.0 4.46 0.003 

F7 280277.6 383406.7 173060.1 265694.2 2.51 0.041 

F8 397653.6 470870.7 246638.7 330333.7 2.96 0.021 

FC5 119251.6 61383.2 51189.6 33183.3 4.42 0.003 

FC6 198822.7 109836.6 92864.5 71200.5 4.32 0.004 
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