
Prevalence of Confusing Code
in Software Projects

Atoms of Confusion in the Wild

Dan Gopstein
NYU

Hongwei Henry Zhou, Phyllis Frankl, Justin Cappos

AtomsOfConfusion.com 1

Hi, my name is Dan Gopstein, and today I’m going to talk about confusing code and
where it lives

Atoms of Confusion in the Wild

2

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

To give you an example of the kind of confusing code we’ll be looking at, I want to
give a motivating exmaple

Atoms of Confusion in the Wild

3

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

Apple’s Goto Fail bug

This code was made famous in 2014 when it allowed any IOS device to be MITM’d

Atoms of Confusion in the Wild

4

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

Apple’s Goto Fail bug

Two Atoms of Confusion:

● Assignment as Value

● Omitted Curly Brace

What my team and I subsequently measured was that there are two specific patterns
in this buggy code that are quantifiably more confusing than other constructs in C/C++

Atoms of Confusion in the Wild

5

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) {

 goto fail;

 goto fail;

Apple’s Goto Fail bug
{

} Two Atoms of Confusion:

● Assignment as Value

● Omitted Curly Brace

Using the value of an assignment expression, and omitting the curly braces from an
if-statement. While we don’t know what caused this bug, it is clear that if this code
didn’t contain these patterns, the bug would not be able to exist in its current.

Both of these patterns are examples of Atoms of Confusion, which I’ll introduce in
more depth later.

Outline

6

Atoms of Confusion are ...

● Confusing - Both in the lab and in the wild

● Prevalent - Occurring frequently in practice

● Buggy - Causing or correlated with faults

But in general through this work, we’ve found that Atoms of Confusion are confusing,
prevalent, and buggy. We’ll step through this findings one by one.

Outline

7

Atoms of Confusion are ...

● Confusing - Both in the lab and in the wild

● Prevalent - Occurring frequently in practice

● Buggy - Causing or correlated with faults

We’ll start with confusion, because this was the jumping off point for us.

Atoms of Confusion

8

Understanding Misunderstandings
in Source Code

D. Gopstein, J. Iannacone, Y. Yan, L. DeLong,
Y. Zhuang, M. Yeh, J. Cappos

ESEC/FSE 2017

A lot of the work described in this paper is dependent on some of the concepts my
group has explored in prior work. I’ll go over the parts that are necessary to
understand our current work, but if you’d like even more information, I encourage you
to go back and check out our paper “Understanding Misunderstandings in Source
Code” that we published at FSE last year.

printf("%d",013)

Confusion

13 11

When a person and a machine read the same piece of
code, yet come to different conclusions about its output.

9

For example, when I will talk about confusion, I’ll mean a very precise definition
tailored to this type of work. Specifically, when I say confusion, I mean any time that a
human believes a piece of code does something different than allowed by the
language spec its defined in. Our work, so far, has mostly been focussed on C/C++,
so for us, confusion happens when a programmer believes code behaves differently
than C/C++ specifies it should.

This definition is useful because it’s objective and quantifiable. We can literally show
programmers small snippets of code, ask them what the output is, and compare that
to the output from a computer and measure the rates that these programmers get the
output correct.

Measurable

printf("%d",013)

10

printf("%d",11)

And that’s what we did previously. We would take two functionally equivalent pieces
of code, and ask 73 programmers to hand evaluate each of the two.

Measurable

11

printf("%d",013)

printf("%d",11)

And nd we measured how often they got each question right or wrong

Measurable

12

printf("%d",013)

printf("%d",11)

And from that data we were able to tell how confusing each snippet was, relative to its
baseline.

Precise

The smallest piece of code
that can cause confusion

Other Stuff

Fluff

Confusing
Code Confusing

Code
13

You’ll also notice that all our examples throughout this talk are quite small. Part of the
idea of our work, the reason we call them “atoms”, is because in addition to wanting to
be objective and measurable, we also want to be precise. When we measure how
confusing a piece of code is, we want to know exactly what language construct we’re
measuring.

Precise

The smallest piece of code
that can cause confusion

Other Stuff

Fluff

Confusing
Code Confusing

Code

Atom of Confusion

14

We’ll refer to this concept as an “Atom of Confusion” - The smallest piece of code that
can reliably cause confusion in a programmer.

Identified Atoms

15φ

In our original paper, we ended up identifying 15 patterns that were significantly more
confusing than their functionally equivalent counter-part. They’re shown above next
the statistical effect size we calculated for each one.

Atoms of Confusion

16

Understanding Misunderstandings in Source Code
D. Gopstein, J. Iannacone, Y. Yan, L. DeLong, Y. Zhuang, M. Yeh, J.
Cappos
ESEC/FSE 2017

V1 && F2()

Logic as Control Flow

V1 = ++V2;

Pre-Increment

printf("%d",013)

Literal Encoding

0 && 1 || 2

Operator Precedence

φ = .63 φ = .48

φ = .28φ = .33

To show a couple examples of the atoms of confusion and their confusingness effect
size, we’ve pulled some representative examples from the first paper, they show
some of the most and least confusing examples from that study.

Outline

17

Atoms of Confusion are ...

● Confusing - Both in the lab and in the wild

● Prevalent - Occurring frequently in practice

● Buggy - Causing or correlated with faults

Everything we’ve seen so far was presented in our paper last year. It shows
experimental evidence for confusing patterns in code, but does not validate those
against the state of actively maintained projects. For the rest of this talk, I’ll show how
we confirmed that these atoms do exist in practice, and the interactions they have
with software projects.

Classifier

18

if

=

x 2

foo

()

;

if (x = 2) foo();

First we needed to be able to determine whether not a piece of code contained an
atom of confusion

We looked at both the lexical representation and the abstract syntax trees

Classifier

19

if

=

x 2

foo

()

;

if (x = 2) foo(); Classifier

And made 15 functions we call “classifiers” which identify whether a piece of code
contains an atom of confusion

Classifier

20

if

=

x 2

foo

()

;

if (x = 2) foo(); Classifier

Two Atoms of Confusion:

● Assignment as Value

● Omitted Curly Brace

{

By running each of our 15 classifiers over a body of source code we’re able to find
every location of every atom of confusion in a software project.

Corpus

21

We collected a corpus of 14 of the largest, most popular and influential open source
projects from several disparate application domains. We chose 7 typical application
domains and picked to complementary projects from each domain. We collected
projects that began as early as 1985 to as recently as 2007. As small as a 200k lines,
to as large as 20 million. We hoped that the size and diversity of these projects would
allow us to not only find atoms of confusion in the wild, but also to analyzes difference
about how each type of project was programmed.

How Often do Atoms Occur?

1 atom every ~12 lines

1 atom every ~44 lines
22

Perhaps the most important question we investigated was whether or not atoms of
confusion actually occurred in real software. The answer to this is a definite “yes”.
Here we show, for each project, the rate at which atoms of confusion occur. All of our
calculations are done on the AST, and so while the numbers are very accurate, they
can be difficult to interpret directly. In rough terms, we found that at most, projects like
git had atoms of confusion every 12 lines, and at least one every 44 lines in projects
like nginx. All of this is to say that atoms of confusion certainly do occur in practice.
But which ones occur?

Which Atoms Occur Most Frequently?

1 every ~51 lines

1 every ~1.6 million
23

Atoms are not homogeneous in their description, so we shouldn’t expect that they’re
used with the same frequence. It turns out that they’re very much not. Some atoms,
like the Reversed Subscript atom, occur only a handful of times over our entire
corpus, while things like omitting curly braces from if statements and while loops are
extremely common occurring almost once every 50 lines.

Are Confusing Patterns Less Common?

24φ

The Y-axis shows how often a pattern occurs (in log scale), and the X-axis shows
how often programmers misunderstood each type of pattern. There is a clear
logarithmic relationship between these two phenomena, which is that more confusing
patterns occur significantly less often than less-confusing patterns.

From these results we cannot determine causality, though, and either direction would
make sense. Perhaps programmers do not write code they’re likely to misunderstand.
Or maybe programmers only become familiar with constructs that appear frequently in
the code they read. Or maybe its something else.

Regardless, the data we gathered from the repositories confirms the data we
gathered in the lab via very different methods which bolsters the validity of both.

Prevalent

ulpmc->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) |
 is_t4(sc) ? F_ULP_MEMIO_ORDER : F_T5_ULP_MEMIO_IMM);

25https://github.com/freebsd/freebsd/blob/3c60e22da7d4460db7adb2b916f55e22b7d60e26/sys/dev/cxgbe/tom/t4_ddp.c#L766

We’ve seen that atoms of confusion are surprisingly common in practice, so I’d like to
give an example that demonstrates how its possible that atoms can appear so
frequently when they look so strange.

This example was pulled from a commit to the popular operating system FreeBSD

Prevalent

ulpmc->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) |
 is_t4(sc) ? F_ULP_MEMIO_ORDER : F_T5_ULP_MEMIO_IMM);

Contains:
● Operator Precedence
● Conditional Operator
● Implicit Predicate

26https://github.com/freebsd/freebsd/blob/3c60e22da7d4460db7adb2b916f55e22b7d60e26/sys/dev/cxgbe/tom/t4_ddp.c#L766

And this example, despite being only a single statement spanning two lines, actually
contains 3 atoms of confusion:

Prevalent

ulpmc->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) |
 is_t4(sc) ? F_ULP_MEMIO_ORDER : F_T5_ULP_MEMIO_IMM);

Contains:
● Operator Precedence
● Conditional Operator
● Implicit Predicate

27https://github.com/freebsd/freebsd/blob/3c60e22da7d4460db7adb2b916f55e22b7d60e26/sys/dev/cxgbe/tom/t4_ddp.c#L766

- An infix operator whose precedence feels ambiguous to a reader
- A more confusing way to write an if-statement
- A condition without an explicit logical test

What’s more, at least one of these atoms of confusion was actually responsible for a
bug in this code. The author had assumed that the precedence of the bitwise-or
operator was higher than that of the conditional expression, however this is not the
case. Immediately after committing this code, they had to go back and fix their
mistake.

Outline

28

Atoms of Confusion are ...

● Confusing - Both in the lab and in the wild

● Prevalent - Occurring frequently in practice

● Buggy - Causing or correlated with faults

Which leads me to my next point. These patterns, which we’ve demonstrated to be
confusing and prevalent, are also correlated with bugs.

Are Atoms Removed More In Bug Fix Commits?

29

Perhaps the worst consequence of misunderstanding code is that it can then result in
a bug. We wanted to see whether atoms were more commonly associated with bugs
than other code.

We took one of the oldest and largest projects in our corpus, GCC, and parsed its
entire git history trying to infer which commits were bug fixes and which were not. We
then looked at the code that was removed in each commit. From this we were able to
determine whether or not certain patterns were removed more often when fixing bugs.
Of the 15 atom types, 9 were removed more often bug fix commits. Since we tested
many hypotheses here it may be appropriate to view these results with extra
skepticism and apply a correction for multiple comparisons. In this case we can say
that any bar receiving more than 2 stars is statistically significant, and therefore 5
patterns are removed more often in bug fix commits, whereas 2 are removed more
often in non-bug-fix commits.

Are Atoms Commented More Often?

30

We also assumed apriori, that code that’s more difficult to understand is more likely to
be commented. Following from that, we hypothesized that atoms of confusion are
more likely to be commented than other code. We searched for comments in the
codebases and looked at the code that was on the same line as in-line comments, or
that followed full-line comments.

Are Atoms Commented More Often?

31

1.
00

We measured the rate that normal, non-atom code was commented, and we
measured the rate that each atom of confusion was commented and we found that of
the 15 atom types, 13 of them (right side of the chart) are more commonly found in
proximity to comments than other AST nodes, and only 2 atoms (left side of the chart)
are commented less often than normal code.

Buggy

32https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

Is everybody here familiar with the “absolute value” function? It’s a mathematical that
takes a negative or positive number, discards the sign, and only returns the
magnitude.

Buggy

33https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1) => ???

So, for example the absolute value of a positive number, like 1, is 1

Buggy

34https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1) => 1

So, for example the absolute value of a positive number, like 1, is 1

Buggy

35https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1) => 1
ABS(-2) => ???

The absolute value of a negative number, like negative 2, is 2

Buggy

36https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1) => 1
ABS(-2) => 2

The absolute value of a negative number, like negative 2, is 2

Buggy

37https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1) => 1
ABS(-2) => 2
ABS(1-2) => ???

And the absolute value of an expression like 1 minus 2

Buggy

38https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1) => 1
ABS(-2) => 2
ABS(1-2) => 1

And the absolute value of an expression like 1 minus 2, is 1

Buggy

39https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1) => 1
ABS(-2) => 2

 ABS(1-2) => 1 -3X

Unless you’re working in the Linux kernel, where the answer is apparently -3

Buggy

40https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1-2)

I’ll walk through this particular example to illustrate how sneaky these bugs can be.

Buggy

41https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1-2)

((x) < 0 ? (- x) : (x))

In this case the absolute value function is defined as macro, not as a proper function.
This means that parameters to absolute value are substituted in textually, instead of
by value.

Buggy

42https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1-2)

((x) < 0 ? (- x) : (x))

So everywhere there’s an X, we replace it with 1-2

Buggy

43https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1-2)

((1-2) < 0 ? (-1-2) : (1-2))

Buggy

44https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1-2)

((1-2) < 0 ? (-1-2) : (1-2))

But if you look at this expansion right here, something went wrong

Buggy

45https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1-2)

((1-2) < 0 ? (-1-2) : (1-2))

-3

Buggy

46https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

ABS(1-2)

((1-2) < 0 ? (-1-2) : (1-2))

-3

The problem is that the author tried to negate the argument to absolute value, but
since the arguments are text, they ended up only prefixing a minus sign, which breaks
when expressions are passed to the macro

Buggy

47https://github.com/torvalds/linux/commit/7aa92c4229fefff0cab6930cf977f4a0e3e606d8

#define ABS(x) ((x) < 0 ? (-x) : (x))

Macro Operator Precedence

We call this pattern “macro operator precedence”

Buggy

48

And it was validated by the linux community as being directly responsible for a whole
class of bugs in their codebase

Summary

49

Atoms of Confusion are ...

● Confusing
○ Atoms are statistically more confusing than other code in the lab
○ Atoms are 13% more likely to be commented than other code

● Prevalent
○ We found millions of examples in our corpus
○ 1 in ~23 lines of code has an atom

● Buggy
○ Bug-fix commits are 25% more likely remove atoms
○ We found and fixed a handful of bugs in Linux

Prevalence of Confusing Code
in Software Projects

Atoms of Confusion in the Wild

Dan Gopstein
NYU

Hongwei Henry Zhou, Phyllis Frankl, Justin Cappos

AtomsOfConfusion.com

Thank You

50

